13 research outputs found

    rust-code-analysis: A Rust library to analyze and extract maintainability information from source codes

    Get PDF
    The literature proposes many software metrics for evaluating the source code non-functional properties, such as its complexity and maintainability. The literature also proposes several tools to compute those properties on source codes developed with many different software languages. However, the Rust language emergence has not been paired by the community’s effort in developing parsers and tools able to compute metrics for the Rust source code. Also, metrics tools often fall short in providing immediate means of comparing maintainability metrics between different algorithms or coding languages. We hence introduce rust-code-analysis, a Rust library that allows the extraction of a set of eleven maintainability metrics for ten different languages, including Rust. rust-code-analysis, through the Abstract Syntax Tree (AST) of a source file, allows the inspection of the code structure, analyzing source code metrics at different levels of granularity, and finding code syntax errors before compiling time. The tool also offers a command-line interface that allows exporting the results in different formats. The possibility of analyzing source codes written in different programming languages enables simple and systematic comparisons between the metrics produced from different empirical and large-scale analysis sources

    SZZ in the time of Pull Requests

    Full text link
    In the multi-commit development model, programmers complete tasks (e.g., implementing a feature) by organizing their work in several commits and packaging them into a commit-set. Analyzing data from developers using this model can be useful to tackle challenging developers' needs, such as knowing which features introduce a bug as well as assessing the risk of integrating certain features in a release. However, to do so one first needs to identify fix-inducing commit-sets. For such an identification, the SZZ algorithm is the most natural candidate, but its performance has not been evaluated in the multi-commit context yet. In this study, we conduct an in-depth investigation on the reliability and performance of SZZ in the multi-commit model. To obtain a reliable ground truth, we consider an already existing SZZ dataset and adapt it to the multi-commit context. Moreover, we devise a second dataset that is more extensive and directly created by developers as well as Quality Assurance (QA) engineers of Mozilla. Based on these datasets, we (1) test the performance of B-SZZ and its non-language-specific SZZ variations in the context of the multi-commit model, (2) investigate the reasons behind their specific behavior, and (3) analyze the impact of non-relevant commits in a commit-set and automatically detect them before using SZZ

    Hydrology and climatology at Laguna La Gaiba, lowland Bolivia: complex responses to climatic forcings over the last 25,000 years

    Get PDF
    Diatom, geochemical and isotopic data provide a record of environmental change in Laguna La Gaiba, lowland Bolivia, over the last ca. 25 000 years. High-resolution diatom analysis around the last glacial–interglacial transition provides new insights into this period of change. The full and late glacial lake was generally quite shallow, but with evidence of periodic flooding. At about 13,100 cal a BP, just before the start of the Younger Dryas chronozone, the diatoms indicate shallower water conditions, but there is a marked change at about 12,200 cal a BP indicating the onset of a period of high variability, with rising water levels punctuated by periodic drying. From ca. 11,800 to 10,000 cal a BP stable, deeper water conditions persisted. There is evidence for drying in the early to middle Holocene, but not as pronounced as that reported from elsewhere in the southern hemisphere tropics of South America. This was followed by the onset of wetter conditions in the late Holocene consistent with insolation forcing. Conditions very similar to present were established about 2,100 cal a BP. A complex response to both insolation forcing and millennial scale events originating in the North Atlantic is noted

    Beyond Refugia: New insights on Quaternary climate variation and the evolution of biotic diversity in tropical South America

    Full text link
    Haffer’s (Science 165: 131–137, 1969) Pleistocene refuge theory has provided motivation for 50 years of investigation into the connections between climate, biome dynamics, and neotropical speciation, although aspects of the orig- inal theory are not supported by subsequent studies. Recent advances in paleocli- matology suggest the need for reevaluating the role of Quaternary climate on evolutionary history in tropical South America. In addition to the many repeated large-amplitude climate changes associated with Pleistocene glacial-interglacial stages (~40 kyr and 100 kyr cyclicity), we highlight two aspects of Quaternary climate change in tropical South America: (1) an east-west precipitation dipole, induced by solar radiation changes associated with Earth’s precessional variations (~20 kyr cyclicity); and (2) periods of anomalously high precipitation that persisted for centuries-to-millennia (return frequencies ~1500 years) congruent with cold “Heinrich events” and cold Dansgaard-Oeschger “stadials” of the North Atlantic region. The spatial footprint of precipitation increase due to this North Atlantic forcing extended across almost all of tropical South America south of the equator. Combined, these three climate modes present a picture of climate change with different spatial and temporal patterns than envisioned in the original Pleistocene refuge theory. Responding to these climate changes, biomes expanded and contracted and became respectively connected and disjunct. Biome change undoubtedly influenced biotic diversification, but the nature of diversification likely was more complex than envisioned by the original Pleistocene refuge theory. In the lowlands, intermittent forest expansion and contraction led to species dispersal and subsequent isolation, promoting lineage diversification. These pulses of climate-driven biotic interchange profoundly altered the composition of regional species pools and triggered new evolutionary radiations. In the special case of the tropical Andean forests adjacent to the Amazon lowlands, new phylogenetic data provide abundant evidence for rapid biotic diversification during the Pleistocene. During warm interglacials and intersta- dials, lowland taxa dispersed upslope. Isolation in these disjunct climate refugia led to extinction for some taxa and speciation for others.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/155561/1/Baker2020.pdfDescription of Baker2020.pdf : Main articl

    Distribution patterns of ferns and lycophytes in the Coastal Region of the state of Rio Grande do Sul, Brazil

    Full text link

    Amazon Fan biomarker evidence against the Pleistocene rainforest refuge hypothesis?

    No full text
    Ocean Drilling Program Leg 155 Site 942 on the Amazon Fan is an ideal location for monitoring palaeoclimatic changes within a significant proportion of the Amazon Basin. We present n-alkane ή13C and taraxerol and laevoglucosan concentration records from this site covering the last 38 ka. The entire n-alkane ή13C record is constrained between −31‰ and −34‰, which is well within the isotopic range occupied by C3 vegetation. The concentration and relative abundance of taraxerol, a mangrove indicator, varies by over an order of magnitude, but seems to have had no effect on the n-alkane ή13C record. The laevoglucosan concentrations are extremely low during the last glacial period, suggesting a relatively low occurrence of forest fires. Laevoglucosan concentrations are highest between 13.5 and 12.5 ka, suggesting an increased incidence of Amazon forest fires at the very end of the Younger Dryas. These records, combined with previously published pollen records from Site 932, reveal no evidence for massive incursions of grasslands into Amazonia during the last glacial period, despite evidence of reduced outflow of the Amazon River indicating more arid conditions. We therefore suggest that savannah encroachment, as proposed by the Pleistocene refuge hypothesis, can be refuted as an explanation for high species endemism within the Amazon Basin, and alternative explanations are required
    corecore